skip to main content


Search for: All records

Creators/Authors contains: "Kihm, Kenneth D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Directional graphene aerogels (DGAs) are proposed as electrode materials to alleviate ionic and mass transport issues in organic redox flow batteries (ORFBs). DGAs with high pore directionality would provide low resistance channels for effective ionic charge and liquid electrolyte transport in these devices. DGAs’ porous and directional characteristics can be controlled by the growth of ice crystals during freeze casting, which is influenced by the self-diffusivity of water, phase change driving forces, water−ice graphene interactions, and convection in the water−graphene media. It is found that mass transport-related properties of DGAs, including pore size and directionality, show a significant dependence on freezing temperature, graphene oxide (GO) loadings, and synthesis vessel diameter-to-height ratio (D/H). For the freezing temperature change from −20 to −115 °C, the average pore size progressively decreased from 120 to 20 μm, and the pore directionality transitioned from lamellar to ill-defined structures. When GO loadings were increased from 2 to 10 mg/mL at a fixed freezing temperature, pore size reduction was observed with less defined directionality. Furthermore, the pore directionality diminished with an increased width-to-height aspect ratio of DGA samples due to the buoyancy-driven convective circulation, which interfered with the directional ice/pore growth. Understanding the comprehensive effects of these mechanisms enables the controlled growth of ice crystals, leading to graphene aerogels with highly directional microstructures. 
    more » « less
    Free, publicly-accessible full text available January 10, 2025
  2. Voltage losses during discharge have been quantitatively investigated in a coulombically balanced biphenyl (Bp)|sodium-polysulfide (Na2Sx) organic redox flow battery. The individual half-cell electrochemical impedance spectroscopy (EIS) response was studied using a flow cell with an in-situ sodium/sodium-ion reference electrode. The anode, consisting of Bp/Bp− couple, contributed approximately 58% of the total cell overpotential during discharge. Further investigation revealed that kinetic overpotential dominating both anode and cathode voltage losses during discharge. The EIS response for the sodium-polysulfide half-cell exhibits two semicircles at high and low frequencies. Since there is limited literature relating the high-frequency semicircle to a physical process, this work extends the investigation of cathode high-frequency EIS features using in-situ and ex-situ electrochemical diagnostic tools. The Bp Nyquist plot consisted of a single semi-circle due to its simpler redox reaction relative to the more complicated Na2Sx. Tafel analysis was used to calculate exchange current density values, with Bp having a lower exchange current density than Na2Sx. This finding explains the relatively higher Bp kinetic voltage loss as compared to Na2Sx. 
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  3. null (Ed.)